
Channel Estimation Based Deep Learning Using 

IRS-Assisted MISO Systems with Correlated 

Channel

Zainab Ali Alsalman * and Hayder Almosa  
Department of Electronic and Communications Engineering, Faculty of Engineering, University of Kufa, Najaf, Iraq 

Email: zainaba.azawi@student.uokufa.edu.iq (Z.A.A.); zaynabshaney@gmail.com 

(Z.A.A.);hayder.almusa@uokufa.edu.iq (H.A.) 

*Corresponding author

Abstract—Intelligent reflecting surface (IRS) is a developing 

technology that can significantly enhance the efficiency of 

wireless communications. It achieves this by smartly 

adjusting the signal reflections at several passive reflecting 

elements. The channel estimation is a crucial problem in 

implementing a viable IRS-assisted communication system. 

Deep learning (DL) has attracted considerable attention for 

tackling physical layer design issues because of its capacity to 

acquire intricate patterns from data with less computing 

complexity and enhanced resilience. This paper proposes a 

channel estimation model with a correlated channel based on 

DL that employs the Minimum Mean-Squared Error 

(MMSE) criterion. Specifically, we design and train the 

Convolutional Neural Network (CNN) architecture using 

received signals to simultaneously estimate both the direct 

channel between the transmitter and receiver, as well as the 

cascaded channel that incorporates the IRS’s reflection. 

Furthermore, the numerical results demonstrate that 

incorporating IRS and the proposed DL-based channel 

estimation technique leads to substantial performance gains 

over conventional channel estimation methods. Specifically, 

at low SNRs (-5 dB), the DL-based approach exhibits NMSE 

values of approximately 0.7659, whereas at higher SNRs (25 

dB), NMSE values decrease to around 0.0022. These findings 

underscore the efficacy of the proposed solution in mitigating 

the adverse effects of channel impairments.  

Keywords—deep learning, intelligent reflecting surface (IRS), 

channel estimation, CNN, MISO system 

I. INTRODUCTION

In recent years, there has been a significant increase in 

the popularity of utilizing reconfigurable metasurfaces for 

wireless communication systems. Intelligent Reflecting 

Surfaces (IRS) offer adjustable degrees of freedom to 

modify the propagation characteristics of problematic 

channels. This makes them a valuable asset for preserving 

and improving network users’ Quality of Service (QoS) 

[1–3]. An IRS typically comprises many passive reflecting 

elements, each capable of reconfiguration and autonomous 

control to modify its phase shift based on the present 

environment. This enables the alteration of the reflection 

of incoming signals. It is possible to get a desired reflection 

pattern by simultaneously altering the phase shifts of all 
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the passive components. This pattern establishes an 

advantageous wireless channel that improves the quality of 

transmission while decreasing the power consumption of 

the system [4,5]. 

However, most techniques that take advantage of this 

ability require Channel State Information (CSI) to and 

from the IRS elements. This is difficult because the 

number of IRS elements can be significant. They are 

usually constructed as passive devices without active 

transceivers or computational resources. Since the IRS is 

not active, the estimation of the CSI needs to be done by 

devices, often a Base Station (BS) or access point, that is 

not located in the same place as the IRS. For instance, the 

BS receives training signals from the user equipment after 

they are reflected by the IRS, possibly through a direct path 

to the BS. These signals are utilized to estimate CSI. The 

performance of the system architecture in both 

conventional and IRS-assisted large MIMO scenarios is 

highly dependent on the precision of the instantaneous CSI. 

Therefore, the accuracy of channel estimate is crucial in 

developing analog and digital beamformers in traditional 

massive MIMO [6,7], as well as in the design of phase 

shifts for reflecting beamformers in RIS-assisted scenarios. 

II. LITERATURE REVIEW

A significant amount of published research on CSI 

estimates for IRS-based systems has emerged recently. 

The pilot overhead can become high due to the number of 

cascaded channel coefficients among the BS, the IRS, and 

the user, which is the product of the number of BS 

antennas, IRS elements, and users. Hu, Chen, et al. [8] 

suggested a two-timescale channel estimation. More 

significantly, a dual-link pilot transmission method is used 

in which the BS transmits downlink pilots and receives 

uplink pilots reflected by the IRS. Therefore, a method 

based on coordinate descent is suggested for BS-IRS 

channel recovery. Jensen, Lindstrøm, et al. [9], presented 

a Minimum Variance Unbiased estimator (MMU) 

estimator to lower the variance. Despite the high pilot 

overhead, this technique achieved good estimation 

accuracy. A method for channel estimation was proposed 
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by de Araújo, Gilderlan T, et al. [10] that uses the Parallel 

Factor (PARAFAC) of received signal tensor modeling. 

This approach handled the less-than-ideal scenario, in 

which the receiver is unaware of the IRS phase shift, and 

phase disturbance is present. 

To tackle the problems with channel estimation or 

beamforming, data-driven DL methods have recently been 

proposed [11]. To improve the efficiency of model-based 

compressive channel estimation for mm Wave IRS 

systems in Orthogonal Frequency Division Multiplexing 

(OFDM) systems. Due to the high-dimensional cascaded 

MIMO channels and passive reflecting components. Liu, 

Slicing, et al. [12] present a deep denoising neural network 

to assist in compressive channel estimation for mm Wave 

IRS systems, hence minimizing training overhead. The 

result demonstrates enhanced representational capabilities 

beyond real-valued ones, leading to improved 

performance. In addition, Elbir, Ahmet M. et al. [13] 

proposed a twin Convolutional Neural Network (CNN) 

architecture that is developed and trained using the 

received pilot signals to estimate the direct and cascaded 

channels accurately. Within a multiuser setting, every 

individual user can utilize CNN to calculate and determine 

their channel. The performance of the proposed DL 

strategy is assessed and compared to state-of-the-art DL-

based techniques, showcasing its exceptional performance. 

Moreover, Elbir, Ahmet M., et al. [14] use a Federated 

Learning (FL) architecture for channel estimation to 

minimize the communication overhead associated with 

data collection. A CNN was developed and trained using 

users’ local datasets without sending the datasets to a 

central server BS. 

Furthermore, the proposed architecture exhibits lower 

estimation errors than state-of-the-art Machine Learning 

(ML) based schemes. In other research, Shtaiwi, Eyad, et

al. [15] employed a CNN-based methodology for mm-

wave channel estimation to decrease the number of active

users during the training phase. Besides channel estimation,

CNN can be used in performance analysis, including Bit

Error Rate (BER) or Symbol Error Rate (SER) for IRS-

based communication. The difference between these

studies and our study is in the system model. In our paper,

we derive the channel model of our system and propose an

efficient channel estimation scheme to estimate both the

BS-user direct channel and BS-IRS-user cascade channel

simultaneously. Still, all of these studies estimate cascade

and direct channels of IRS separately or assume the direct

channel is a blockage and do not consider it. Therefore,

ignoring the direct link in IRS systems is typically

ineffective. It can result in the underestimation of the

power received and the disregard for the advantages of

variety. We focus on combining two main IRS channels in

a single vector and then analyze channel estimators.

This paper proposes a DL approach for channel 

estimation in IRS-assisted-MISO systems. In the proposed 

DL framework, the CNN is specifically developed to 

estimate the direct and cascade channels directly in the 

presence of a correlated Rayleigh fading channel, 

considering the received observation signals as input. The 

performance and efficiency of DL-based channel 

estimation are assessed and contrasted with classic channel 

estimation techniques, namely the Least Squares (LS) and 

Minimum Mean Square Error (MMSE) estimators. The 

DL estimator, designed by utilizing Deep Neural Networks 

(DNNs) with Rectified Linear Unit (ReLU) activation, 

efficiently reached a performance similar to that of the 

MMSE estimator when a significant amount of training 

data is accessible. The DL model is trained on a large 

number of channel realizations to attain reliable 

performance of the estimator. The trained model is 

assessed using test data generated separately during the 

prediction stage. The subsequent sections of this paper are 

organized in the following ways. Section III illustrates the 

system model of the proposed IRS system, and the channel 

estimation scheme, which uses two different methods, is 

introduced. Section IV presents the proposed channel 

estimation scheme via deep learning and the CNN 

architecture model for the system. The simulation findings 

are presented in Section V, while the conclusions are 

supplied in Section IV.  

Notation: Lowercase and uppercase “a” and “A” 

represent a vector and a matrix by boldface letters, 

respectively. The symbols AH  and AT represent the 

conjugate and transpose of matrix A. The expression 

diag(x) represents a diagonal matrix in which the vector x 

is positioned along its diagonal. The Kronecker product of 

a and b denotes a ⊗ b. Vec (A) is vectorizing the matrix 

A. Finally, CN ~(µ,σ2) represents the complex Gaussian

distribution, where µ is the mean and σ2 is the variance.

III. SYSTEM MODEL

Consider an IRS-assisted MISO communication system, 

as depicted in Fig.1. The BS is presumed to have M 

antennas to serve K individual single antenna users. The 

beam steering is facilitated by an IRS consisting of N 

passive reflecting components. Within the IRS-assisted 

communication scheme, every element of the IRS causes 

the arriving signal from the BS to a phase shift. Changing 

the PIN diodes allows one to change the phase of every 

individual IRS element. The IRS controller controls the 

diodes, and the backhaul link is connected to the BS [16, 

17]. One may characterize the received signal 𝒚 ∈ ℂ𝑀×1 at 

time t, t= 1… 𝑇𝑃 as:

𝒚t = √𝑝(𝒉𝒅 + 𝑮Ø𝒕𝒉𝒓)xt + 𝒏𝑡.    (1) 

where 𝑝 denotes the transmit power, 𝑮 ∈ ℂ𝑀×𝑁 represents 

the channel matrix between the BS and IRS, 𝒉𝑟 ∈  ℂ𝑁×1

expresses the channel between the IRS and the user, and 

the channel connection between the BS and the user is 

denoted as 𝒉𝑑 ∈ ℂ𝑀×1. The signal-to-noise ratio (SNR) is

represented as  𝑝 𝜎2⁄ . 𝑥𝑡  and 𝒏𝑡 denote the transmitted

pilot signal of the user and Additive White Gaussian Noise 

(AWGN) at the receiver with CN~(µ,σ2) respectively. The 

correlation model for spatial correlation is used at the BS 

and IRS elements expressed as: 

𝒉𝒓  ∈  ∁𝑁(0, 𝑹𝑁)   (2) 

𝑮 ∈  ∁𝑁(0, 𝑹𝑀𝑁)  (3) 
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  𝒉𝒅  ∈  ∁𝑁(0, 𝑹𝑀)          (4) 

where 𝑹𝑁, 𝑹𝑀𝑁, and 𝑹𝑀  in Eqs.(2–4) represent the 

channel correlation matrix between IRS-user, IRS-BS, and 

BS-user, respectively. The calculation of 

𝑹𝑁, 𝑹𝑀𝑁, and 𝑹𝑀 are obtained in Section V.  

The diagonal matrix  Ø𝒕 ∈  ℂ𝑁×𝑁  represents the 

properties of the IRS. The amplitude reflection coefficient 

α belongs to the interval [0,1] and represents the on/off 

state of the system. The phase shift variables [ Ø1, . . ., Ø𝑁] 

where Ø𝒕  ∈ [0,2𝜋) , are optimized to enhance the 

performance of the IRS. The cascade channel V can be 

expressed mathematically as: 
 

 Ø𝒕 =α diag (𝑒𝑗Ø1, 𝑒𝑗Ø2, . . . , 𝑒𝑗ØN).       (5) 
   

It is expedient to express Eq. (1) equivalently as: 
 

     𝒚t = √p(𝒉𝒅 + 𝑽Ø𝒕)xt + 𝒏𝑡.        (6) 
   

This scenario utilizes the channels in a correlated 

Rayleigh fading, in which the channel coefficients remain 

constant inside a specific time block known as a coherence 

time 𝜏 > T . Where T  is the time of the training period 

but undergoes independent fluctuations between blocks. 

We utilize Time-Division Duplexing (TDD) for both the 

transmission of data from the user to the network (uplink) 

and the transfer of data from the network to the user 

(downlink) depending on channel reciprocity to acquire 

the channel state information at the IRS in both directions 

of the transmission. 

In communication systems assisted by IRS, channel 

estimation aims to determine the cascaded channel V, 

denoted as M (N + 1), which can be represented by the 

Khatri-Rao product. 

 

 vec(𝒉𝑑 + 𝑽Ø𝒕) = 𝒉𝒅 + vec (𝑽 Ø𝒕)        (7) 

 

With 𝒉𝑑  = vec ( 𝐡𝑑 ). By using the properties of the 

vectorization product  in Eq (7) and applying vec (ABC) = 

(CT ⊗ A) vec(B) , we obtain:  

𝑣𝑒𝑐(𝒚 𝑡) = (𝑥𝑇 ⊗ 𝑰𝑀)(𝒉𝑑 + ( Ø𝒕 ⊗ 𝑰𝑀 vec (V))+ 𝒏𝑡(8) 

= (𝑥𝑇 ⊗ 𝑰𝑀) [𝑰𝑀 Ø𝒕 ⊗ 𝑰𝑀 ] [
𝒉𝑑

𝑣𝑒𝑐(𝑽)
] + 𝒏𝑡        (9) 

= (𝑥𝑇 ⊗ 𝑰𝑀) [ 𝑰𝑀  Ø𝒕 ⊗ 𝑰𝑀] 𝒉 + 𝒏𝑡             (10) 

y= Z 𝜳 𝒉+𝒏                                (11) 

Assume X=Z𝜳, Where Z =diag ([𝐙1 , . . . , 𝒁𝑀]) using a 

known pilot matrix X. The received signal is generally 

written as shown in Eq. (11). 

𝐲=√p X 𝐡 + 𝐧                                     (12) 

y= 

[
 
 
 
 
𝒚1

𝒚2.
.
.

𝒚𝑇]
 
 
 
 

  𝒏 = 

[
 
 
 
 
𝒏1

𝒏2.
.
.

𝒏𝑇]
 
 
 
 

 , 𝒉 = 

[
 
 
 
 
 
𝒉𝑑

𝒗1.
.
.

𝒗𝑀𝑁]
 
 
 
 
 

                       (13) 

The IRS channel estimation problem involves the 

estimation of the vector h, which comprises the direct and 

cascading channels from Eq. (13), which include the 

observation vector, pilot matrix, channel vector, and noise 

vector in that order. Two methods are commonly used to 

estimate h, both based on Eq. (12). 

 

 

Fig. 1. System model of IRS-assisted wireless communication. 

A. LS Estimation Approach  

The LS estimator is the simplest way to estimate 𝐡. Also, 

this approach can connect the gap between the present 

coding theory and mathematics statistics. [18] may be 

expressed as: 
 

 �̂� = ‖ 𝐲 − �̂� ‖2      (14) 

 

 �̂� = ‖ 𝐲 − √𝐩 𝐗 𝐡 ‖2.      (15) 
 

The solution is an optimization problem to optimize the 

CSI. LS estimator of single k user and M transmit antenna 

with MISO system is given by: 

 

 

 
�̂�LS =

1

√p
 (𝐗T𝐗)−𝟏𝐗T 𝐲. 

Proof. See Appendix A. 

    (16) 

 

Eq. (16) represents the LS estimators applied to our 

system. The random variable n is distributed according to 

a multivariate normal distribution with a mean of zero and 

a covariance matrix, denoted as CN ~ (0,𝝈𝟐𝑰𝑀) assuming 

that the noise is uncorrelated. 

B. MMSE Estimation Approach  

The MMSE estimator is predicated on a stochastic 

model. Conversely, the LS technique presupposes a 

channel that functions consistently and does not depend on 

prior information. Estimating the values 𝐡𝑟 , 𝐆 and 𝐡𝑑  is 

often done by utilizing coupled Rayleigh fading and prior 

knowledge of second-order statistics. The optimal value of 

h that minimizes the Mean Squared Error (MSE) can be 

obtained using the following method . 
 

 �̂� = min ‖ 𝐲 − 𝐗𝐡‖2.       (17) 

By minimizing the received signal in Eq. (17), the 

MMSE estimator of single k user and M transmit antenna 

with MISO system is given by: 

 �̂�𝐌𝐌𝐒𝐄 =
1

√p
 𝐑h(𝐑h +

σ2

P
 𝐈M)−1 𝐗𝐓 𝐘.     (18) 

Proof. See Appendix B. 
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The matrices in Eq. (18) are associated with 𝐑h are 

independent of the data and can be computed and saved 

offline as 𝐑hvaries at a relatively slow rate. 

IV. CHANNEL ESTIMATION VIA DEEP LEARNING 

Deep learning involves using deep neural networks 

(DNNs) and has demonstrated significant efficacy in 

diverse domains. This includes computer vision and 

natural language processing. It has been used in numerous 

communication systems, covering both the physical and 

network levels. These disciplines involve the distribution 

of electricity [19] and the assessment of channels [20]. The 

communication system operates as a black box, employing 

an end-to-end deep learning structure to transmit and 

receive information. The effectiveness of the beamformer 

design depends significantly on the comprehension of 

channel information [21]. The IRS-assisted systems 

consist of multiple communication lines, including a direct 

channel that connects BS directly to users and a cascaded 

channel that connects BS to users through the IRS. 

A. Deep Learning Approach 

This section presents an efficient approach for 

implementing channel estimation using CNN, a deep 

learning system designed to analyze visual data in various 

computer vision tasks. It is intended to emulate the 

function of the human visual brain. CNN is made up of 

layers that process input data. CNN comprises layers that 

analyze the incoming data. The convolutional layers utilize 

filters to extract information from the input data. CNN 

utilizes parameter sharing and provides spatial invariance, 

allowing for object recognition irrespective of position or 

orientation. They acquire hierarchical representations of 

features, ranging from low-level to high-level. CNN is 

trained using labeled datasets, modifying weights to 

enhance performance. They have attained remarkable 

outcomes in activities such as picture classification, object 

identification, and image segmentation. CNN are 

specialized algorithms that facilitate automatic feature 

extraction and precise identification of visual patterns. 

When training the algorithms, while highly effective for 

image processing, is primarily designed to operate on real-

valued data. However, communication systems often 

employ complex-valued signals, introducing challenges 

when directly applying CNN to such data. To address this, 

a common approach involves separating the real and 

imaginary components of the complex-valued signal. 

Subsequently, these sequences can be reshaped into two-

dimensional images, which can then be fed into the CNN 

as separate inputs. By processing these images 

independently and combining their outputs in a subsequent 

layer, the CNN can effectively capture the complex-valued 

nature of the original signal. In the following sections, we 

will present the architectural design and channel 

estimation process using CNN. 

B. Network Architecture 

The architectural design of the CNN network is shown 

in Fig. 2. This paper employed a CNN model architecture 

to assess the NMSE of single-user MISO signals 

throughout repeated training with the generated dataset. 

The complex signal was initially divided into its 

constituent real and imaginary components. Next, the 

CNN model is provided with both the numerical values 

and the label. In the proposed model, the input layer is 

linked to the observation vector, and the input size is 

determined by the number of features in the input data. The 

input size is defined by the number of users and the total 

number of antennas utilized in the system. The 

connectivity between the layers is established by a series 

of five convolutional layers, an activation function called 

ReLU, and regression layers. Table I  presents the number 

of filters and the size of the convolutional layers. The 

convolutional layer consists of a grid of neurons arranged 

in a rectangular pattern, where each neuron receives inputs 

from a similar rectangular area in the previous layer. 
 

 
 Fig. 2. Architecture of CNN model. 

TABLE I. HYPER PARAMETER OF THE PROPOSED CNN 

Layer  Size  Operation  

1 512(9×9×4) convolutional+RelU 

2 512(9×9×512) convolutional+RelU 

3 128(9×9×512) convolutional+RelU 

4 128(9×9×128)  convolutional+RelU 

5 1(5×5×128) convolutional+Regreesion 

 

In our MISO system-based IRS, creating synthetic data 

for different SNR levels is the first step in the training 

process for channel estimation. The direct channel from 

the access point to the user and the channel matrices from 

the IRS to the user and from the access point to the IRS are 

generated randomly for every SNR level. Noise is added 

to mimic the transmission environment. A CNN uses the 

actual channel as the label and the MMSE channel estimate 

as the input. The real and imaginary components of the 

channel estimates are divided into two image sets, which 

are then concatenated and fed into the CNN. The network 

consists of several convolutional layers with ReLU 

activation, designed to learn the mapping between the 

estimated and true channel responses, with the final layer 

outputting the channel estimate. 

TABLE II. SIMULATION PARAMETERS 

Parameter Value 

IRS Reflecting Element 32 

Training Data Size 10,000 

Transmit Antenna 7 

Number Of Epochs 5 

Learning Rate 0.01 

Optimizer ADAM 

Minibatch Size 32 

 

The model based on CNN is trained using both the label 

and the data. The produced channel data is inputted into 

the neural network, which utilizes an ADAM optimizer for 

optimization. 10,000 data sets were used to construct the 

model, with 0.25% allocated for validation purposes and 
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0.75% designated for training. Table II indicates the 

simulation parameters. 

V. SIMULATION RESULT

 This section discusses the simulation results of the 

proposed method compared to the conventional estimation 

techniques in terms of NMSE. The NMSE metric can be 

expressed as E{
‖ 𝐡−�̂�‖

2

‖ 𝐡‖2 }. Where E denotes the expectation 

operation and �̂� , 𝒉 are the estimated and true channels, 

respectively. The simulation assumes the number of 

transmit antennas at the BS, M = 10, and the number of 

passive elements in IRS, N = 32, with a single user. IRS 

phase values are DFT matrix. The transmit signal 

xt generated using a mathematical formula based on

Zadoff-Chu (ZC) Sequences. The exponential correlation 

model for spatial correlation is used at the BS and IRS 

elements and expressed as follows [22]. 

[𝐑IRS−BS] = (ρ1e
jØk)|ⅈ−j| (19) 

[𝐑BS−user] = (ρ2e
jØk)|ⅈ−j| (20) 

[𝐑IRS−user] = (ρ3e
jØk)|ⅈ−j|. (21) 

where 0< ρ1, ρ2,ρ1 <1 denotes the level of spatial

correlation between the BS antenna and IRS elements. We 

set ρ1 = ρ1 = ρ1 = 0.5. The SNR is defined as 
p

𝜎2 . The 

symbols received at the receiver are decomposed into their 

real and imaginary components and the associated label 

using 10,000 data sets for the model. The network is 

trained with a widely recognized Adam optimizer with a 

learning rate 0.001 and minibatch = 32. In addition, we set 

up L=100 Monte-Carlo experiments are conducted to 

assess the NMSE. 

Fig. 3. NMSE against SNR for M= 10, N = 32, T=N+1. 

Fig. 3 demonstrates the performance comparison of 

three distinct methods, LS, MMSE, and DL, for channel 

estimation across different SNRs. The metric employed for 

comparison is the NMSE. The LS technique exhibits the 

greatest NMSE among all SNR values. These findings 

suggest that LS exhibits the lowest level of performance 

compared to the other two approaches. As SNR grows, the 

NMSE drops. However, the NMSE is still considerably 

greater compared to the different approaches, particularly 

at lower SNRs. 

Fig. 4. NMSE against length of training T for M= 10, N=32. 

Fig. 5. NMSE against the number of passive elements for M= 10, 

T=N+1. 

When SNR is higher, DL approaches demonstrate 

superior efficacy in managing noise and delivering precise 

channel estimates. Additionally, the MMSE method 

outperforms the LS method. It demonstrates a reduced 

NMSE for all SNR values. The NMSE for MMSE drops 

faster than LS when the SNR improves, suggesting a 

higher level of resilience to noise. The DL approach 

surpasses LS and MMSE in performance for all SNR 

values. The NMSE for DL is the lowest, especially when 

the SNR is higher. DL approaches demonstrate superior 

efficacy in managing noise and delivering accurate 

channel estimates. 

Fig. 4 shows the NMSE with the number of IRS 

elements N examined for three different estimation 

techniques. The total number of IRS elements ranges from 

8 to 65. The superiority of the DL approach over both the 

LS and MMSE methods is apparent for all values of N. The 

NMSE for the DL approach, represented by a dashed black 

line, begins at roughly 0.06 for a value of N equal to 10 

and gradually decreases to approximately 0.04 as the 

number of elements IRS reaches 60. The significant 

reduction in the NMSE highlights the greater ability of the 

DL technique to utilize the additional information from 

extra IRS parts. 
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Fig. 5 depicts the relationship between the NMSE and 

the length of training (T) for three distinct estimation 

methodologies. The performance of each technique is 

monitored throughout different lengths of training data, 

ranging from 10 to 70. 

It is clear from the data that the DL approach 

consistently performs better than both the LS and MMSE 

methods, regardless of the training period. The superiority 

of the DL approach is evident in its lower NMSE values. 

The NMSE starts at around 0.06 for a training length of 10 

and decreases to approximately 0.05 as the training length 

grows. The decrease in NMSE suggests that the DL 

approach greatly benefits from additional training data, 

improving prediction accuracy. 

VI. CONCLUSIONS

This paper proposed a DL approach to address the 

channel estimation for IRS single user with correlated 

Rayleigh fading channels in MISO communication 

systems. Specifically, a CNN architecture is designed to 

accurately predict both the direct and cascading channels 

of the IRS based on the received signal. Our simulation 

result is the CNN outperforms standard MMSE and LS 

estimators by achieving almost optimal MMSE 

performance at different SNR levels. Moreover, the study 

examines how the duration of pilot training and the size of 

the IRS affect estimation accuracy, offering valuable 

insights for designing practical systems. 

APPENDIX A 

proof of theorem 1 

LS derivative 

MINIMIZE L(Y, H) Δ MIN |𝐲 − 𝐱𝐡 |𝟐 

An estimate 𝐡 can be formed by minimizing. 

|| 𝐲 − 𝐗𝐡 ||𝟐

|| 𝐲 − 𝐗𝐡  ||𝟐 ← square of norm error (𝐲 − 𝐱𝐡 )

find h,which has the least square error 

L(𝐲, 𝐡)   = || 𝐲 − 𝐗𝐡  ||𝟐

|| 𝐲 − 𝐱𝐡  ||𝟐 = (𝐲 − 𝐗𝐡 )𝐓  (𝐲 − 𝐗𝐡)

(𝐲−
𝐓𝐗𝐓𝐡𝐓) (𝐲 − 𝐗𝐡 )

𝐝(𝐲, 𝐡) = (𝐲𝐲𝐓  −  𝐲𝐓𝐗𝐡 − 𝐗𝐓𝐡𝐓𝐲 + 𝐗𝐓𝐡𝐓𝐗𝐡)

we know vTu = uTv  scalar 

(vTu)T = uTv    dot product 

|| 𝐲 − 𝐗𝐡 ||𝟐 = 𝐲𝐲𝐓 −  𝟐𝐗𝐓𝐡𝐓𝐲 + 𝐗𝐓𝐡𝐓𝐗𝐡 = f(𝐡)

= −𝟐𝐗𝐓𝐲 + 𝟐𝐗𝐓𝐡𝐓𝐗𝐡 = 𝟎

→ 𝐗𝐓𝐗𝐡 = 𝐗𝐓𝐲

�̂�LS = (𝐗𝐓𝐗)−𝟏 𝐗𝐓𝐲

APPENDIX B 

Proof of Theorem 2 

MMSE Derivation: 

Let’s consider the received signal 

𝐲 = 𝐗𝐡 + 𝐧 

processed to find MMSE estimate h: 
  𝐄[𝐧𝐓] = 𝟎

𝐄[𝐲] = 𝐄[𝐗𝐡 + 𝐧] 

𝐄[𝐡] + 𝐄[𝐧] 

∴     𝐡^ = 𝐑𝐡𝐲 𝐑𝐲𝐲
−𝟏  (𝟏)      ∶  MMSE estimate 

𝐑𝐲𝐲 = 𝐄[𝐲𝐲𝐓] = 𝐄 [(𝐗𝐡 + 𝐧 )(𝐱𝐡 + 𝐧 )
𝐓
]

= 𝐄[(𝐗𝐡 + 𝐧 )(𝐡𝐓𝐗𝐓 + 𝐧𝐓)𝐓]

= 𝐗 E(𝐡𝐡𝐓)𝐱𝐓 + 𝐗 E[𝐡𝐧𝐓] + E[𝐡𝐧𝐓]𝐗𝐓 + E[𝐧𝐧𝐓]

∴ 𝐑𝐲𝐲 = 𝛔𝐧
𝟐(𝐗 𝐗𝐓 + 𝛔𝟐𝐈𝐧)    (2)

By using the Gaussian noise vector. 

 𝐄[𝐧𝐧𝐓] = 𝛔𝟐𝐈

𝐑𝐡𝐲 =  𝐄[𝐡 𝐲𝐓]

= E[𝐡(𝐡𝐗 + 𝐧)𝐓]

𝐑𝐡𝐲     = E [𝐡 (𝐡𝐓𝐗𝐓 + 𝐧𝐓)]     (3) 

Now, substituting Eqs. (2) & (3) in Eq. (1) 

𝐡𝐦𝐦𝐬𝐞
∧ =

𝟏

√𝐏
(𝐗 𝐗𝐓 + 𝛔𝟐𝐈𝐧)

−𝟏𝐗𝐓𝐲
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